ar X iv : s ol v - in t / 9 90 40 17 v 1 1 6 A pr 1 99 9 QUASI - PERIODIC AND PERIODIC SOLUTIONS FOR SYSTEMS OF COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

نویسندگان

  • V Z ENOLSKII
  • N A KOSTOV
چکیده

We consider travelling periodic and quasi-periodic wave solutions of a set of coupled nonlinear Schrödinger equations. In fibre optics these equations can be used to model single mode fibers with strong birefingence and two-mode optical fibers. Recently these equations appear as model, which describe pulse-pulse interaction in wavelength-division-multiplexed channels of optical fiber transmission systems. Two phase quasi-periodic solutions for in-tegrable Manakov system are given in terms of two dimensional Kleinian functions. The reduction of quasi-periodic solutions to elliptic functions is discussed. New solutions in terms generalized Hermite polynomials, which are associated with two-gap Treibich-Verider potentials are found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : s ol v - in t / 9 80 90 04 v 1 3 1 A ug 1 99 8 ALGEBRO - GEOMETRIC SOLUTIONS OF THE BOUSSINESQ HIERARCHY

We continue a recently developed systematic approach to the Bousinesq (Bsq) hierarchy and its algebro-geometric solutions. Our formalism includes a recursive construction of Lax pairs and establishes associated Burchnall-Chaundy curves, Baker-Akhiezer functions and Dubrovin-type equations for analogs of Dirichlet and Neumann divisors. The principal aim of this paper is a detailed theta function...

متن کامل

ar X iv : h ep - t h / 92 10 08 3 v 1 1 5 O ct 1 99 2 QUASI - PERIODIC SOLUTIONS FOR MATRIX NONLINEAR SCHRÖDINGER EQUATIONS

The Adler-Kostant-Symes theorem yields isospectral hamiltonian flows on the dual˜g + * of a Lie subalgebrã g + of a loop algebrã g. A general approach relating the method of integration of Krichever, Novikov and Dubrovin to such flows is used to obtain finite-gap solutions of matrix Nonlinear Schrödinger Equations in terms of quotients of θ-functions.

متن کامل

ar X iv : m at h / 99 05 02 6 v 1 [ m at h . A G ] 5 M ay 1 99 9 DIFFERENTIAL EQUATIONS CHARACTERISING QUASI - PERIODIC SOLUTIONS OF THE KP HIERARCHY

We compute an infinite system of differential equations that characterises the quasi-periodic solutions of the KP hierarchy ; that is, the solutions of this new hierarchy are precisely those solutions of the KP hierarchy coming from theta functions of Jacobians.

متن کامل

ar X iv : q - a lg / 9 70 70 17 v 1 1 4 Ju l 1 99 7 NONABELIAN INTEGRABLE SYSTEMS , QUASIDETERMINANTS , AND MARCHENKO LEMMA

We find explicit (multisoliton) solutions for nonabelian integrable systems such as periodic Toda field equations, Langmuir equations, and Schrödinger equations for functions with values in any associative algebra. The solution for nonabelian Toda field equations for root systems of types A, B, C was expressed by the authors in [EGR] using quasideterminants introduced and studied in [GR1-GR4]. ...

متن کامل

ar X iv : s ol v - in t / 9 90 20 09 v 1 1 2 Fe b 19 99 A Critical Ising Model on the Labyrinth

A zero-field Ising model with ferromagnetic coupling constants on the so-called Labyrinth tiling is investigated. Alternatively, this can be regarded as an Ising model on a square lattice with a quasi-periodic distribution of up to eight different coupling constants. The duality transformation on this tiling is considered and the self-dual couplings are determined. Furthermore, we analyze the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999